Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.282
Filtrar
1.
Ultrason Sonochem ; 105: 106865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564909

RESUMO

To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.


Assuntos
Flavonas , Lipase , Tamanho da Partícula , Solventes , Lipase/metabolismo , Lipase/antagonistas & inibidores , Animais , Flavonas/química , Flavonas/farmacologia , Suínos , Solventes/química , Pâncreas/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Sonicação , alfa-Glucosidases/metabolismo , Precipitação Química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
3.
Sci Rep ; 14(1): 7746, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565861

RESUMO

Diabetes Mellitus is a metabolic disease characterized by elevated blood sugar levels caused by inadequate insulin production, which subsequently leads to hyperglycemia. This study was aimed to investigate the antidiabetic potential of pyrazolobenzothiazine derivatives in silico, in vitro, and in vivo. Molecular docking of pyrazolobenzothiazine derivatives was performed against α-glucosidase and α-amylase and compounds were selected based on docking score, bonding interactions and low root mean square deviation (RMSD). Enzyme inhibition assay against α-glucosidase and α-amylase was performed in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) and starch substrate. Synthetic compound pyrazolobenzothiazine (S1) exhibited minimal conformational changes during the 100 ns MD simulation run. S1 also revealed effective IC50 values for α-glucosidase (3.91 µM) and α-amylase (8.89 µM) and an enzyme kinetic study showed low ki (- 0.186 µM, - 1.267 µM) and ki' (- 0.691 µM, - 1.78 µM) values with the competitive type of inhibition for both enzymes α-glucosidase and α-amylase, respectively. Moreover, studies were conducted to check the effect of the synthetic compound in a mouse model. A low necrosis rate was observed in the liver, kidney, and pancreas through histology analysis performed on mice. Compound S1 also exhibited a good biochemical profile with lower sugar level (110-115 mg/dL), increased insulin level (25-30 µM/L), and low level of cholesterol (85 mg/dL) and creatinine (0.6 mg/dL) in blood. The treated mice group also exhibited a low % of glycated haemoglobin (3%). This study concludes that S1 is a new antidiabetic-agent that helps lower blood glucose levels and minimizes the complications associated with type-II diabetes.


Assuntos
Hiperglicemia , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Hiperglicemia/tratamento farmacológico , Insulina , alfa-Amilases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Relação Estrutura-Atividade
4.
Phytochemistry ; 221: 114066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494085

RESUMO

A bichalconoid, globunoid A (1) and three biflavanones, globunoids B-D (2-4), previously undescribed, were isolated from the stems of Knema globularia, along with fourteen known analogues 5-18. The chemical structures of 1-4 were elucidated by the comprehensive spectroscopic analysis including UV, IR, HRESIMS, and NMR; the absolute configurations were determined based on their NOESY data, DP4+ statistical analysis, and ECD calculation. Up to now, compounds 2 and 3 represent the first 3,3″-linked biflavanone structures. Among the isolated compounds, 2, 3, and 2,3-dihydrocalodenin B (6) potently inhibited α-glucosidase and α-amylase activities, with IC50 values in the range 1.1-7.5 µM. Furthermore, the most active compound 6 was found to be a non-competitive inhibitor against these two enzymes.


Assuntos
Plantaginaceae , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Extratos Vegetais/química
5.
Eur J Med Chem ; 269: 116332, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508120

RESUMO

The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 µM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 µM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 µM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.


Assuntos
Compostos de Bifenilo , Diabetes Mellitus Tipo 2 , Quinolinas , Animais , Ratos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Quinolinas/farmacologia , Quinolinas/química , Acetamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
6.
Int J Biol Macromol ; 264(Pt 1): 130535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432277

RESUMO

This study investigated the molecular mechanism underlying the binding interaction between apigenin (API) and α-glucosidase (α-glu) by a combination of experimental techniques and computational simulation strategies. The spontaneously formation of stable API-α-glu complex was mainly driven by hydrogen bonds and hydrophobic forces, leading to a static fluorescence quenching of α-glu. The binding of API induced secondary structure and conformation changes of α-glu, decreasing the surface hydrophobicity of protein. Computational simulation results demonstrated that API could bind into the active cavity of α-glu via its interaction with active residues at the binding site. The important roles of key residues responsible for the binding stability and affinity between API and α-glu were further revealed by MM/PBSA results. In addition, it can be found that the entrance of active site tended to close after API binding as a result of its interaction with gate keeping residues. Furthermore, the structural basis for the binding interaction behavior of API was revealed and visualized by weak interaction analysis. The findings of our study revealed atomic-level mechanism of the interaction between API, which might shed light on the development of better inhibitors.


Assuntos
Apigenina , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Análise Espectral , Sítios de Ligação , Ligação Proteica , Termodinâmica
7.
J Chromatogr A ; 1720: 464822, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38502989

RESUMO

α-Glucosidase plays a direct role in the metabolic pathways of starch and glycogen, any dysfunction in its activity could result in metabolic disease. Concurrently, this enzyme serves as a target for diverse drugs and inhibitors, contributing to the regulation of glucose metabolism in the human body. Here, an integrated analytical method was established to screen inhibitors of α-glucosidase. This step-by-step screening model was accomplished through the biosensing and affinity chromatography techniques. The newly proposed sensing program had a good linear relationship within the enzyme activity range of 0.25 U mL-1 to 1.25 U mL-1, which can quickly identify active ingredients in complex samples. Then the potential active ingredients can be captured, separated, and identified by an affinity chromatography model. The combination of the two parts was achieved by an immobilized enzyme technology and a microdevice for reaction, and the combination not only ensured efficiency and accuracy for inhibitor screening but also eliminated the occurrence of false positive results in the past. The emodin, with a notable inhibitory effect on α-glucosidase, was successfully screened from five traditional Chinese medicines using this method. The molecular docking results also demonstrated that emodin was well embedded into the active pocket of α-glucosidase. In summary, the strategy provided an efficient method for developing new enzyme inhibitors from natural products.


Assuntos
Emodina , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Cromatografia de Afinidade , Extratos Vegetais/química
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124160, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513313

RESUMO

This study looked at the effects of acarbose (ACA) and quercetin (QUE) on α-amylase activity, employing QUE and ACA to measure enzyme activity. The study observed that both drugs suppressed α-amylase activity, with greater inhibition reported at higher concentrations. The use of tryptophan residues as an intrinsic fluorescence probe permitted the observation of conformational changes in α-amylase, with CD measurements utilized to explore the secondary structure in the presence of QUE and ACA. Docking studies revealed an effective interaction between α-amylase, quercetin and acarbose, with a higher binding energy. Finally, a trajectory analysis was done to establish the stability and volatility of these complexes. These findings have potential significance for the development of new α-amylase-related therapeutics.


Assuntos
Acarbose , Quercetina , Acarbose/farmacologia , Acarbose/química , Quercetina/metabolismo , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases/metabolismo , Dicroísmo Circular , Simulação de Acoplamento Molecular
9.
Carbohydr Res ; 537: 109074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452719

RESUMO

Two new glycosides, sindosides A-B (1-2), along with 11 previously identified metabolites (3-13), were isolated from an ethanolic extract of the leaves of Sindora siamensis var. maritima. The structures of the purified phytochemicals were elucidated by interpreting their spectroscopic data (IR, NMR, and HRMS). The absolute configuration of compound 1 was established by experimental and calculated ECD spectra. The antimicrobial results revealed that compound 8 selectively inhibited C. albicans fungal with a MIC value of 64 µg/mL, whereas 11 presented a weak inhibition toward E. faecalis, S. aureus, and B. cereus bacterial strains with the same MIC value of 128 µg/mL. Interestingly, compounds 1, 2, 8, 9, and 11 showed α-glucosidase inhibitory activity with IC50 values ranging from 14.42 ± 0.21 to 30.62 ± 0.18 µM, which were more active than the positive control (acarbose, with an IC50 value of 46.78 ± 1.37 µM). Enzyme kinetic analysis revealed that compounds 1, 2, and 11 behaved as uncompetitive inhibitors with Ki values of 8.60 ± 1.04, 5.16 ± 0.73, and 7.17 ± 0.98 µM, respectively.


Assuntos
Anti-Infecciosos , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Cinética , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Extratos Vegetais/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
10.
Bioorg Chem ; 145: 107224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401361

RESUMO

This study presents the synthesis and bio-evaluation of new triazolylated dihydropyridine and tetrahydropyridine azasugar scaffolds (F1-14). Azasugar glycomimetics are the synthetic substances that mimic the structural and functional characteristics of natural carbohydrates showcasing promising potential as therapeutic agents for diabetes. The α-glucosidase inhibitory activity of synthesized final compounds were evaluated against the commercially available α-glucosidase enzyme. Majority of the screened compounds displayed excellent inhibition with IC50 values ranging from 2.12 to 75.11 µM, when compared to the standard drug Acarbose. Particularly, compound F5 with IC50 value of 2.12 µM was found to be the most active compound among the series. Further molecular docking studies of selected ligands were performed to investigate the binding interactions with enzyme active sites. Their specific binding patterns have been analysed with the binding sites of Saccharomyces cerevisiae α-glucosidase. These findings suggest these candidates as the potential leads for the anti-diabetic activity.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Saccharomyces cerevisiae
11.
Bioorg Chem ; 145: 107207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402795

RESUMO

Inhibition of α-glucosidase and α-amylase is an important target for treatment of type 2 diabetes. In this work, a novel series of pyrano[2,3-b]chromene derivatives 5a-m was designed based on potent α-glucosidase and α-amylase inhibitors and synthesized by simple chemical reactions. These compounds were evaluated against the latter enzymes. Most of the title compounds exhibited high inhibitory activity against α-glucosidase and α-amylase in comparison to standard inhibitor (acarbose). Representatively, the most potent compound, 4-methoxy derivative 5d, was 30.4 fold more potent than acarbose against α-glucosidase and 6.1 fold more potent than this drug against α-amylase. In silico molecular modeling demonstrated that compound 5d attached to the active sites of α-glucosidase and α-amylase with a favorable binding energies and established interactions with important amino acids. Dynamics of compound 5d also showed that this compound formed a stable complex with the α-glucosidase active site. In silicodrug-likeness as well as ADMET prediction of this compound was also performed and satisfactory results were obtained.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/química , Acarbose , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Cromonas/farmacologia , Cromonas/química , alfa-Amilases , Relação Estrutura-Atividade
12.
Chem Biodivers ; 21(4): e202400236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380697

RESUMO

The phytochemical investigation of Viburnum chinshanense leaves led to the isolation and identification of four new phenolic glycosides, viburninsides A-D (1-4), and eight known analogues (5-12). The structures of the four undescribed compounds were determined by spectroscopic techniques, including 1D NMR, 2D NMR, and HRESIMS, and their containing sugar units were confirmed by acid hydrolysis and HPLC analysis of the monosaccharide's chiral derivatives. Additionally, the α-amylase and α-glucosidase inhibitory activities of the isolated compounds were assessed. Compounds 1, 2, 4, 9, and 10 exhibited potential inhibitory activities against α-amylase and α-glucosidase with IC50 values ranging from 35.07 µM to 47.42 µM and 18.27 µM to 43.65 µM, respectively. Molecular docking analysis of compound 4 with the strongest inhibition against the target enzymes was also conducted.


Assuntos
Glicosídeos , Viburnum , Glicosídeos/química , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/química , alfa-Amilases , Simulação de Acoplamento Molecular , Fenóis/farmacologia
13.
Int J Biol Macromol ; 263(Pt 1): 130175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360242

RESUMO

Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 µM (IC50 of acarbose 190 µM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 µM), much better than vitamin C (IC50 = 33.04 µM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 µM. No cytotoxicity was observed for 15c (up to 40 µM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.


Assuntos
Diabetes Mellitus , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Acarbose/farmacologia , Acarbose/química , alfa-Glucosidases/metabolismo , alfa-Amilases/química , Quinoxalinas/farmacologia , Antioxidantes/química , Estresse Oxidativo , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química
14.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398628

RESUMO

Inhibiting the activity of intestinal α-glucosidase is considered an effective approach for treating type II diabetes mellitus (T2DM). In this study, we employed an in vitro enzymatic synthesis approach to synthesize four derivatives of natural products (NPs) for the discovery of therapeutic drugs for T2DM. Network pharmacology analysis revealed that the betulinic acid derivative P3 exerted its effects in the treatment of T2DM through multiple targets. Neuroactive ligand-receptor interaction and the calcium signaling pathway were identified as key signaling pathways involved in the therapeutic action of compound P3 in T2DM. The results of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations indicate that compound P3 exhibits a more stable binding interaction and lower binding energy (-41.237 kcal/mol) with α-glucosidase compared to acarbose. In addition, compound P3 demonstrates excellent characteristics in various pharmacokinetic prediction models. Therefore, P3 holds promise as a lead compound for the development of drugs for T2DM and warrants further exploration. Finally, we performed site-directed mutagenesis to achieve targeted synthesis of betulinic acid derivative. This work demonstrates a practical strategy of discovering novel anti-hyperglycemic drugs from derivatives of NPs synthesized through in vitro enzymatic synthesis technology, providing potential insights into compound P3 as a lead compound for anti-hyperglycemic drug development.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Ácido Betulínico
15.
Sci Rep ; 14(1): 3419, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341468

RESUMO

A library of novel bis-Schiff base derivatives based on thiobarbituric acid has been effectively synthesized by multi-step reactions as part of our ongoing pursuit of novel anti-diabetic agents. All these derivatives were subjected to in vitro α-glucosidase inhibitory potential testing after structural confirmation by modern spectroscopic techniques. Among them, compound 8 (IC50 = 0.10 ± 0.05 µM), and 9 (IC50 = 0.13 ± 0.03 µM) exhibited promising inhibitory activity better than the standard drug acarbose (IC50 = 0.27 ± 0.04 µM). Similarly, derivatives (5, 6, 7, 10 and 4) showed significant to good inhibitory activity in the range of IC50 values from 0.32 ± 0.03 to 0.52 ± 0.02 µM. These derivatives were docked with the target protein to elucidate their binding affinities and key interactions, providing additional insights into their inhibitory mechanisms. The chemical nature of these compounds were reveal by performing the density functional theory (DFT) calculation using hybrid B3LYP functional with 6-311++G(d,p) basis set. The presence of intramolecular H-bonding was explored by DFT-d3 and reduced density gradient (RGD) analysis. Furthermore, various reactivity parameters were explored by performing TD-DFT at CAM-B3LYP/6-311++G(d,p) method.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiobarbitúricos , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química , Bases de Schiff/química , Relação Estrutura-Atividade , Estrutura Molecular
16.
Food Funct ; 15(4): 2234-2248, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38318730

RESUMO

A promising and efficacious approach to manage diabetes is inhibiting α-glucosidase and α-amylase activity. Therefore, the inhibitory activities of five natural sweeteners (mogrosides (Mog), stevioside (Ste), glycyrrhizinic acid (GA), crude trilobatin (CT), and crude rubusoside (CR)) against α-glucosidase and α-amylase and their interactions were evaluated in vitro using enzyme kinetics, fluorescence spectroscopy, Fourier infrared spectroscopy, and molecular docking. The inhibitor sequence was CT > GA > Ste, as GA competitively inhibited α-glycosidase activity while CT and Ste exhibited mixed inhibitory effects. Compared to a positive control acarbose, the inhibitory activity of CT was higher. For α-amylase, the mixed inhibitors CT, CR, and Mog and the competitive inhibitor Ste effectively inhibited the enzyme, with the following order: CT > CR > Ste > Mog; nevertheless, the inhibitors were slightly inferior to acarbose. Three-dimensional fluorescence spectra depicted that GA, CT, and CR bound to the hydrophobic cavity of α-glucosidase or α-amylase and changed the polarity of the hydrophobic amino acid-based microenvironment and structure of the polypeptide chain backbone. Infrared spectroscopy revealed that GA, CT, and CR could disrupt the secondary structure of α-glucosidase or α-amylase, which decreased enzyme activity. GA, trilobatin and rubusoside bound to amino acid residues through hydrogen bonds and hydrophobic interactions, changing the conformation of enzyme molecules to decrease the enzymatic activity. Thus, CT, CR and GA exhibit promising inhibitory effects against α-glucosidase and α-amylase.


Assuntos
Acarbose , Diterpenos do Tipo Caurano , Flavonoides , Glucosídeos , Inibidores de Glicosídeo Hidrolases , Polifenóis , Acarbose/farmacologia , Acarbose/química , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , alfa-Amilases/metabolismo , Estrutura Secundária de Proteína , Aminoácidos
17.
Bioorg Chem ; 144: 107177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335756

RESUMO

In order to find effective α-glucosidase inhibitors, a series of thiazolidine-2,4-dione derivatives (C1 âˆ¼ 36) were synthesized and evaluated for α-glucosidase inhibitory activity. Compared to positive control acarbose (IC50 = 654.35 ± 65.81 µM), all compounds (C1 âˆ¼ 36) showed stronger α-glucosidase inhibitory activity with IC50 values of 0.52 ± 0.06 âˆ¼ 9.31 ± 0.96 µM. Among them, C23 with the best anti-α-glucosidase activity was a reversible mixed-type inhibitor. Fluorescence quenching suggested the binding process of C23 with α-glucosidase in a static process. Fluorescence quenching, CD spectra, and 3D fluorescence spectra results also implied that the binding of C23 with α-glucosidase caused the conformational change of α-glucosidase to inhibit the activity. Molecular docking displayed the binding interaction of C23 with α-glucosidase. Compound C23 (8 âˆ¼ 64 µM) showed no cytotoxicity against LO2 and 293 cells. Moreover, oral administration of C23 (50 mg/kg) could reduce blood glucose and improve glucose tolerance in mice.


Assuntos
Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Tiazolidinedionas , Camundongos , Animais , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Estrutura Molecular , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Tiazolidinas
18.
J Chromatogr A ; 1717: 464667, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301331

RESUMO

In the present work, comprehensive two-dimensional reversed-phase countercurrent chromatography × reversed-phase liquid chromatography combined (2D RPCCC × RPLC) with 2D microfraction bioactive evaluation was employed to screen and isolate α-glucosidase inhibitors from Rheum palmatum L. Countercurrent chromatography was employed to improve 2D analysis and preparative separation. A selected biphasic solvent system composed of petroleum ether/ethyl acetate/methanol/water with gradient elution mode was used for the first dimension RPCCC separation (1D RPCCC). Solid-phase extraction was applied to eliminate interfering polar compounds before the second dimension analysis (2D RPLC). 76 components were shown in 2D contour plot in UV 280 nm. 11 Candidates were separated by a scaled-up CCC and identified by 1H NMR and 13C NMR, including anthraquinones, flavonoids, stilbenes, phenols, and glucoside derivatives. In addition, it was found that two components, resveratrol-4'-O-(6″-galloyl)glucoside (36) and lyciumaside (43) were identified as natural α-glucosidase inhibitors in Rheum palmatum L. for the first time.


Assuntos
Inibidores de Glicosídeo Hidrolases , Rheum , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Rheum/química , Distribuição Contracorrente/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Solventes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos
19.
Chem Biodivers ; 21(3): e202400124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279623

RESUMO

Two undescribed triterpenes, syzyfolium A (1) and syzyfolium B (2), together with twelve known compounds, terminolic acid (3), actinidic acid (4), piscidinol A (5), threo-dihydroxydehydrodiconiferyl alcohol (6), lariciresinol-4-O-ß-D-glucoside (7), icariol A2 (8), 14ß,15ß-dihydroxyklaineanone (9), garcimangosone D (10), (+)-catechin (11), myricetin-3-O-α-L-rhamnopyranoside (12), quercitrin (13), and 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-ß-D-glucopyranoside (14) were isolated from the leaves of Syzygium myrsinifolium. Their chemical structures were determined by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 3 and 4 inhibited significantly α-glucosidase with IC50 values of 23.99 and 36.84, respectively, and compounds 1 and 2 inhibited significantly α-amylase with IC50 values of 35.48 and 43.65 µM, respectively.


Assuntos
Syzygium , Triterpenos , Syzygium/química , alfa-Glucosidases , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
20.
BMC Complement Med Ther ; 24(1): 65, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291462

RESUMO

BACKGROUND: Type 2 Diabetes mellitus (DM) is an affliction impacting the quality of life of millions of people worldwide. An approach used in the management of Type 2 DM involves the use of the carbohydrate-hydrolyzing enzyme inhibitor, acarbose. Although acarbose has long been the go-to drug in this key approach, it has become apparent that its side effects negatively impact patient adherence and subsequently, therapeutic outcomes. Similar to acarbose in its mechanism of action, bee propolis, a unique natural adhesive biomass consisting of biologically active metabolites, has been found to have antidiabetic potential through its inhibition of α-amylase. To minimize the need for ultimately novel agents while simultaneously aiming to decrease the side effects of acarbose and enhance its efficacy, combination drug therapy has become a promising pharmacotherapeutic strategy and a focal point of this study. METHODS: Computer-aided molecular docking and molecular dynamics (MD) simulations accompanied by in vitro testing were used to mine novel, pharmacologically active chemical entities from Egyptian propolis to combat Type 2 DM. Glide docking was utilized for a structure-based virtual screening of the largest in-house library of Egyptian propolis metabolites gathered from literature, in addition to GC-MS analysis of the propolis sample under investigation. Thereafter, combination analysis by means of fixed-ratio combinations of acarbose with propolis and the top chosen propolis-derived phytoligand was implemented. RESULTS: Aucubin, identified for the first time in propolis worldwide and kaempferol were the most promising virtual hits. Subsequent in vitro α-amylase inhibitory assay demonstrated the ability of these hits to significantly inhibit the enzyme in a dose-dependent manner with an IC50 of 2.37 ± 0.02 mM and 4.84 ± 0.14 mM, respectively. The binary combination of acarbose with each of propolis and kaempferol displayed maximal synergy at lower effect levels. Molecular docking and MD simulations revealed a cooperative binding mode between kaempferol and acarbose within the active site. CONCLUSION: The suggested strategy seems imperative to ensure a steady supply of new therapeutic entities sourced from Egyptian propolis to regress the development of DM. Further pharmacological in vivo investigations are required to confirm the potent antidiabetic potential of the studied combination.


Assuntos
Diabetes Mellitus Tipo 2 , Própole , Humanos , Acarbose/farmacologia , Acarbose/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Quempferóis , Própole/farmacologia , Simulação de Acoplamento Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Egito , Qualidade de Vida , alfa-Glucosidases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...